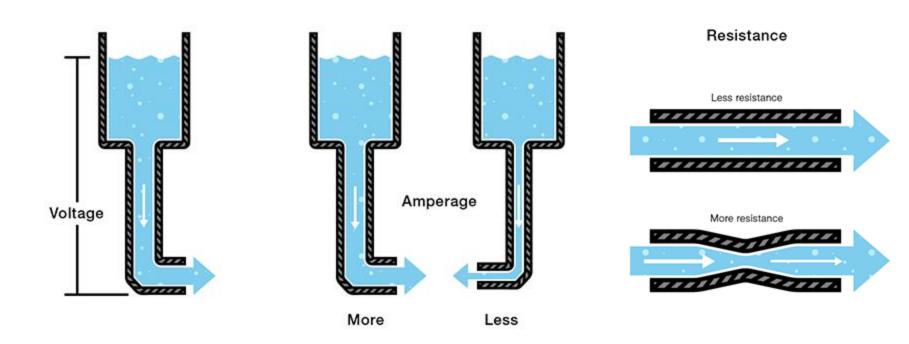
Introduction to Arduino & ESP8266


Pete Keefe

11 May 2017

Video Tutorial [16 minutes]

- https://www.youtube.com/watch?v=nL34zDT Pkcs&feature=youtu.be
- Also see other tutorials

Basic Electronic Concepts

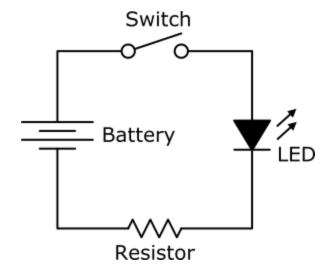
Basic Electronics

- Voltage or Potential measured in Volts [V] —
- Current (flow on energy) measured in Amperes [I]
- Resistance (restrict flow) measured in Ohms [Ω]
- Ohm's Law

```
Voltage = Current * Resistance V = I * R
Rewritten I = V / R -or- R = V / I
```

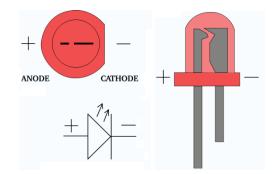
Power (P measured in Watts)

$$P = V * I \quad \text{or } P = (I * R) * I = I^2 R$$


In electronics, power is converted to heat

Maximum Voltages & Currents

- Arduino
 - -0 to 5v (+ 0.5v)
 - -40 mA (1 milliAmp = 0.001 Amp) [in or out]
- ESP8266
 - -0 to 3.3v (+0.3)
 - 12 mA per pin [in or out]
- Exceed and a pin or the entire microcontroller can be destroyed!


LEDs Need Resistors!

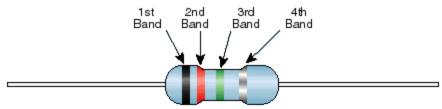
If no resistor LED would quickly burn out – most LED will take max of 25 mA and/or 1.7 to 2.1v (depends on color) before burning out!

Calculate size in Ohms of resistor using Ohms Law R = V / I

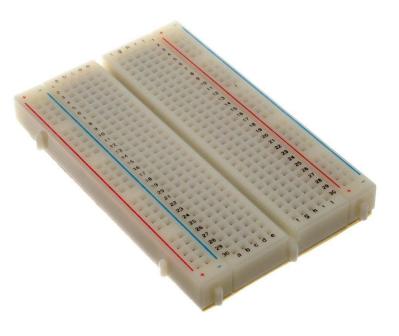
Assume supply voltage = 5v & max Led current 25 mA

Need resistor to limit the current by consuming 3v at 25 mA

 $3v / 0.025a = 120 \Omega$ (minimum)


Fixed Resistors

Type & physical size dependant on power to be consumed (as heat!) – typically we will be using ¼ Watt resistor shown on left.


Come in limited number of ohms – chose value close Color coding specifies ohms value (we will typically see 4 color bands on the resistors that we use)

Standard EIA Color Code Table 4 Band: ±2%, ±5%, and ±10%

Color	1st Band (1st figure)	2nd Band (2nd figure)	3rd Band (multiplier)	4th Band (tolerance)
Black	0	0	10º	
Brown	1	1	10 ¹	
Red	2	2	10 ²	± 2%
Orange	3	3	10³	
Yellow	4	4	10 ⁴	
Green	5	5	10⁵	
Blue	6	6	10 ⁶	
Violet	7	7	10 ⁷	
Gray	8	8	10 ⁸	
White	9	9	10 ⁹	
Gold			10 ⁻¹	±5%
Silver			10-2	±10%

Experimenters Breadboard


Come in many sizes

Ravine separates two sides and allows in center allows dual inline packages to be inserted

Typically:

2 outer rails on each side for power (red = +, blue = ground)

5 cross wise pins are connected Use bent wire and/or jumper cables to connect pins

Tools I Use All the Time

- Needle nose pliers
- Wire cutters
- Magnifier
- Light
- Soldering iron
- Parts Box
- Small parts envelops

Arduino

- Google Pin Diagram for Specific Item
- Arduino Uno:

https://i.stack.imgur.com/wKz2l.png

- Arduino IDE
 - Plug in board
 - Select com port
 - Select appropriate board model
 - Select sample program
- Blink program

ESP8266

To add ESP8266 support to Arduino IDE

http://arduino.esp8266.com/stable/package_esp8266com_index.json

- Various models of Development Boards
 https://frightanic.com/iot/comparison-of-esp8266-nodemcu-development-boards/
- NodeMCU Development Board version 2: https://dziadalnfpolx.cloudfront.net/blog/wp-content/uploads/2015/09/esp8266-nodemcu-dev-kit-v2-pins.png
- ESP8266 Blink LED
- ESP8266 with WiFi and Web Server to control LED