
MQTT
Message Queuing Telemetry Transport

Pete Keefe

April 2019

MQTT

• Open standard for IoT communications between devices and
controllers

– No formal standards organization for IoT traffic thus many
different messaging types in use

• Originally designed by IBM in 1999 for it’s MQ Series message
queuing product line
– Node-Red – MQTT imbedded into (Node-Red was also originally IBM)

– Now an open standard

• Publish-subscribe-based messaging protocol
– Publisher does not know subscribers to a message

– Subscriber(s) do not know publisher of a message

• Small foot-print (not much code or overhead)

Components

• Broker - Software running on “server” that
receives messages from publishers, stores
messages, sends messages to subscribers
– Can also be configured to exchange messages with other

brokers – i.e., home broker to cloud broker

– Options access rules are possible

• Clients – Software that starts and maintains
connection to broker, might be a:
– Publisher(s): sends messages to broker along

– Subscriber(s): receives requested messages from broker

Message Flow

MQTT Message Parts

• Message

– Topic

– Payload

• simple data

• JSON object

{ "employee":{ "name":"John", "age":30, "city":"New
York" } }

{ "employees":["John", "Anna", "Peter"] }

– Retain sent by publisher – true / false

– Quality of Service (QOS) – 0,1,2

Message Topic

• Topic names are:

– Case sensitive

– use UTF-8 strings

– Must consist of at least one character to be valid

• i.e.,
– home/sensor1/temp/33

– home/sensor1/light/0

– $sys/ (prefix reserved for broker status)

• Wildcard subscriptions
– $sys/#

– home/# (# = match all with home/ prefix)

– home/sensor1/*/* (* = match to all home/sensor1)

• Brokers can optionally change topic if to/from another broker

Retain Flag

• Broker will only keeps (retains) the last
message with the same topic

• If broker receives another message with same
topic but no payload, it removes the retained
message

• Allows for publisher to send message to
subscriber that hasn’t started yet

Quality of Service (QOS)

=0 At most once - the message is sent only once
and the client and broker take no additional steps
to acknowledge delivery (fire and forget).

=1 At least once - the message is re-tried by the
sender multiple times until acknowledgement is
received (acknowledged delivery).

=2 Exactly once - the sender and receiver engage in
a two-level handshake to ensure only one copy of
the message is received (assured delivery)

Last Will & Testament

• When Clients connect to broker they can
optionally send an LWT which is a standard
format message to be published on
unexpected loss of the client’s keep alive
signal.

• LWT message will normally have a Retain =
true

Installing on Raspberry Pi

• Installing mosquitto broker and test clients
Sudo apt-get update

sudo apt –get install -y mosquitto mosquitto-clients

• Set broker to start automatically
sudo systemctl enable mosquitto.service

sudo systemctl start mosquitto.service

• If you want to write Python clients
pip install paho-mqtt -or- pip3 install paho-mqtt

• Default mosquitto configuration
– File: /etc/mosquitto/mosquitto.conf

– Broker on port 1883

– Allows anonymous clients

Demos

• Using mosquitto_pub & mosquitto_sub

• Node-Red on Raspberry Pi publishes
message(s) to Node-Red on another
Raspberry Pi

• Python mqtt client

– Publish message

– Subscribe to messages

• ESP8266 with ESPEasy for controlling lights

